Скрыть объявление

Если у вас возникают проблемы с пополнением баланса по карте, то пробуйте через СБП . Он еще и выгоднее (без комиссии банка).


СБП - это система быстрых платежей - перевод по номеру телефона без комиссии

Скрыть объявление

Если у Вас проблемы с пополнением баланса, то попробуйте отключить VPN и воспользоваться этим Сайтом

Скрыть объявление

Было ли у Вас такое, что Вы не могли найти курс? Если да, то напишите нам в Службу поддержки какой курс вам нужен и мы постараемся его найти.

Скрыть объявление

Пополняйте баланс и получайте при оплате складчин кэшбек в размере 10%

Доступно

[Stepik] Машинное обучение: Метрики качества классификации и регрессии (Сергей Спирёв)

Тема в разделе "Курсы по программированию"

Цена:
1480 руб
Взнос:
109 руб
Организатор:
Организатор

Список участников складчины:

1. Организатор
Купить
  1. Организатор Организатор складчин

    [Stepik] Машинное обучение: Метрики качества классификации и регрессии (Сергей Спирёв)

    [​IMG]

    Добрый день! Меня зовут Сергей Спирёв, и я являюсь автором данного курса.

    Когда я только начинал свой путь в изучении машинного обучения, тема метрик качества была для меня какой-то «головоломной». Вроде бы и нет в ней какого-то совсем уж сложного математического аппарата, но когда в неё углубляешься, то в голове каша и винегрет из понятий, формул, терминов. А когда её ещё и преподносят в академической форме, то тут уж совсем тоска зелёная.

    Но тема метрик качества является одной из основополагающих в машинном обучении. Это фундамент, на котором строится всё машинное обучение с точки зрения применимости и полезности моделей на практике. И хорошо разбираться в этом вопросе – это важный момент.

    Как понять, ваша модель «умная» или «глупая»? Понять это можно, только посмотрев на её ошибки и оценки качества. Хорошо, посмотрели на оценки качества – результат получился супер. Отлично! Но подходит ли та метрика качества, которую вы применили к вашей модели, или она не учитывает важные особенности ваших данных?

    На эти вопросы специалист по машинному обучению должен уметь отвечать.

    Скажу также, что по своей натуре я не являюсь теоретиком. Я предпочитаю, когда теория соединяется с практикой. Через практику я могу понять больше, чем из сухих формул.

    Этот же подход я применяю в подготовке обучающего материала. Я не теоретизирую много, стараюсь не углубляться туда, куда не нужно углубляться с точки зрения здравого смысла и практической применимости. А также пытаюсь сложные понятия перевести на простой человеческий язык.

    Материала, предоставленного в курсе будет достаточно, чтобы приобрести надёжную базу, на которую впоследствии вы можете наслаивать новые знания в такой интересной области, какой является машинное обучение.

    Для кого этот курс
    Курс для тех, кто уже делает первые шаги в изучении машинного обучения, но желает глубже изучить вопросы оценки качества моделей с использованием инструментов библиотеки Scikit-learn.

    Скрытый текст. Доступен только зарегистрированным пользователям.Нажмите, чтобы раскрыть...
     
  2. Похожие складчины
    Загрузка...
  3. Организатор Организатор складчин
    Уведомляем вас о начале сбора взносов.
    Цена продукта: 1480 руб. Взнос с каждого участника: 109 руб.
    Кол-во участников в основном списке: 1 чел.

    Начало сбора взносов 14 Август 2025 года
     
    Организатор,
Наверх