Скрыть объявление

Если у вас возникают проблемы с пополнением баланса по карте, то пробуйте через СБП . Он еще и выгоднее (без комиссии банка).


СБП - это система быстрых платежей - перевод по номеру телефона без комиссии

Скрыть объявление

Если у Вас проблемы с пополнением баланса, то попробуйте отключить VPN и воспользоваться этим Сайтом

Скрыть объявление

На короткое время рассказываем где достать редкие курсы

Подробности ТУТ

Скрыть объявление

Было ли у Вас такое, что Вы не могли найти курс? Если да, то напишите нам в Службу поддержки какой курс вам нужен и мы постараемся его найти.

Скрыть объявление

Пополняйте баланс и получайте при оплате складчин кэшбек в размере 10%

Запись

[stepik] ML-инженер: от первой модели до продакшена (Максим Крупчатников)

Тема в разделе "Курсы по программированию"

Цена:
12990 руб
Взнос:
589 руб
Организатор:
Евражкa

Список участников складчины:

1. Евражкa
open
2
Записаться
  1. Евражкa Организатор складчин

    [stepik] ML-инженер: от первой модели до продакшена (Максим Крупчатников)

    [​IMG]

    Чему вы научитесь

    • Понимать ключевые принципы машинного обучения и типы задач (регрессия, классификация, кластеризация).
    • Готовить данные: очистка, обработка выбросов, кодирование категорий, масштабирование.
    • Работать с NumPy, Pandas и визуализировать данные (Matplotlib, Seaborn, Plotly).
    • Разрабатывать модели на Scikit-learn: от линейной регрессии до бустингов (XGBoost, LightGBM, CatBoost).
    • Оценивать модели по метрикам (accuracy, precision, recall, F1, ROC-AUC) и проводить валидацию.
    • Оптимизировать гиперпараметры (GridSearchCV, Optuna, Hyperopt) и собирать ансамбли.
    • Строить нейронные сети в PyTorch и TensorFlow (CNN, RNN, Transfer Learning).
    • Решать задачи рекомендаций, временных рядов, кластеризации и детекции аномалий.
    • Интерпретировать модели (SHAP, LIME) и учитывать bias/fairness.
    • Версионировать эксперименты и модели (MLflow, DVC).
    • Собирать REST API для ML-моделей (FastAPI).
    • Упаковывать и деплоить модели (Docker, Streamlit, облачные сервисы).
    • Настраивать мониторинг и перезапуск моделей в продакшене (Evidently, Prometheus).
    • Разрабатывать end-to-end ML-проекты и оформлять GitHub-портфолио.
    • Готовиться к собеседованиям на позиции ML/DS/ML Engineer (алгоритмы, SQL, системный дизайн).
    О курсе
    Этот курс — про инженерную сборку ML-систем под реальные условия продакшена. Вы пройдёте путь от чистого ноутбука и базовой модели до полностью работающего сервиса: с пайплайном данных, API, CI/CD и мониторингом.

    Внутри — не только «как обучить модель», но и то, что важно в эксплуатации: версионирование экспериментов (MLflow, DVC), контейнеризация и деплой (Docker, FastAPI), автоматизация пайплайнов (Airflow), контроль качества (Evidently), алерты, retraining и управление зависимостями. Отдельные блоки посвящены оптимизации гиперпараметров, интерпретации моделей и принципам надёжности ML-сервисов.

    Ничего лишнего: каждое занятие завершается практическим артефактом — обученной моделью, пайплайном, Docker-образом или эндпоинтом. Все проекты запускаются «из коробки» и воспроизводятся по инструкциям.

    Итог курса
    На выходе вы соберёте и задеплоите end-to-end ML-продукт: подготовка данных, обучение модели, REST API, контейнеризация, деплой в облако и мониторинг метрик. Получившийся проект можно добавить в портфолио и использовать как базу для продакшн ML-систем.

    Для кого этот курс
    Для всех, кто хочет уверенно войти в машинное обучение и доводить модели до продакшена.
    Подойдёт студентам, начинающим аналитикам, разработчикам и Data Scientist’ам, которые хотят системно понять, как строятся реальные ML-сервисы — от идеи и данных до готового API и мониторинга.
    Курс не требует глубоких математических знаний — всё нужное разбирается по ходу практики.

    Программа курса
    1. Введение в ML:
    • Что такое машинное обучение и где оно применяется
    • История и современные тренды
    • Классы задач ML (регрессия, классификация, кластеризация, генера
    • Настройка окружения (Python, Jupyter, библиотеки)
    • Git основы для ML-проектов
    2. Математические основы ML:
    • Линейная алгебра для ML
    • Основы статистики
    • Теория вероятностей
    • Оптимизация и градиенты
    3. Python для машинного обучения:
    • Основы Python для DS/ML
    • Типы данных и коллекции в Python
    • Работа с NumPy
    • Pandas: анализ табличных данных
    • Визуализация: Matplotlib и Seaborn
    • Plotly: интерактивные графики
    • Scikit-learn: базовые возможности
    • Практикум: первая модель классификации
    4. Сбор и подготовка данных:
    • Источники данных: CSV, SQL, API, web scraping
    • Парсинг данных (requests, BeautifulSoup, Scrapy)
    • Работа с JSON, XML, Parquet
    • Очистка данных и обработка пропусков
    • Выбросы и методы их обработки
    • Масштабирование данных
    • Кодирование категориальных переменных
    • Балансировка классов
    • Практикум: подготовка датасета
    5.Классические алгоритмы ML:
    • Линейная и логистическая регрессия
    • KNN и методы ближайших соседей
    • Деревья решений и Random Forest
    • SVM
    • Наивный Байес
    • Метрики качества: accuracy, precision, recall, F1, ROC-AUC
    • Валидация моделей
    • Практикум: сравнение алгоритмов
    6. Ансамбли и настройки моделей:
    • Bagging и Random Forest
    • Boosting: AdaBoost, Gradient Boosting
    • XGBoost, LightGBM, CatBoost
    • GridSearchCV и RandomizedSearchCV
    • Байесовская оптимизация
    • Hyperopt, Optuna
    • Ensemble Stacking
    • Отслеживание экспериментов (MLflow)
    • Практикум: подбор гиперпараметров
    7. Глубокое обучение:
    • Что такое нейронные сети и как они устроены
    • Функции активации, loss-функции, оптимизаторы
    • Регуляризация: Dropout, BatchNorm
    • PyTorch основы
    • TensorFlow/Keras основы
    • CNN для изображений
    • RNN и LSTM
    • Attention и Seq2Seq
    • Transfer Learning
    • Практикум: классификация изображений
    8. Специализированные задачи ML:
    • Кластеризация: KMeans, DBSCAN
    • Обнаружение аномалий
    • Рекомендательные системы
    • Анализ временных рядов: ARIMA, Prophet, LSTM
    • Интерпретируемость моделей: SHAP и LIME
    • Bias и fairness в ML
    • Практикум: рекомендательная система
    9. MLops и продакшн:
    • Жизненный цикл ML-проекта
    • Версионирование моделей (MLflow, DVC)
    • Сериализация моделей
    • REST API для моделей (FastAPI)
    • Docker для ML
    • Деплой: Streamlit и облако
    • Мониторинг моделей
    • Best practices в ML в продакшне
    • Практикум: end-to-end проект
    10. Подготовка к собеседованиям:
    • Типовые вопросы по ML и DL
    • Математика на собеседовании
    • Алгоритмы и структуры данных
    • SQL для ML-инженеров
    • Python coding challenges
    • Системный дизайн ML-систем
    • Разбор реальных кейсов
    • Как оформить портфолио и GitHub
    • Итоговый проект
    На выходе вы получите:
    • системное понимание ML и MLOps
    • рабочее портфолио (5+ проектов)
    • финальный end-to-end ML-сервис с автообновлением модели и мониторингом

    Скрытый текст. Доступен только зарегистрированным пользователям.Нажмите, чтобы раскрыть...
     
  2. Похожие складчины
    Загрузка...
Наверх